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Analytic expressions for the assessment of orbital and total momentum values of atoms
using Slater-type orbitals (STO) are formulated. A detailed description of the use of these
expressions is reported. In order to test these expressions, we have carried out calculations of
momentum expectation values and made comparisons with results based on numerical quadra-
‘ture. These formulae are likely to be both more convenient and much more accurate.

1. Introduction

During the past years interest in Compton scattering as a tool for studying elec-
tronic momentum distributions in atoms, molecules and solids has increased [1,2].
The possibility of obtaining atomic and molecular total energies makes Compton
scattering an extremely attractive technique, particularly since these energies are
generally obtained from spectroscopic and thermodynamic quantities which are
often difficult or impossible to be accurately measured.

Several theoretical studies of electron momentum distributions have been
reported. Weiss et al. [3] computed the nonrelativistic Hartree-Fock Compton pro-
files of elements employing the double-zeta wave functions of Clementi [4]. Biggs
et al. [5] calculated both relativistic and nonrelativistic Compton profiles for all
free atoms up to Z = 102 employing numerical Hartree-Fock wave functions [6,7].
Ponce has tabulated orbital momentum expectation values for {p) and {p*> using
Clementi and Roetti functions [9]. Nonrelativistic {p*> values for t = —2 to 4 using
the analytic Roothaan-Hartree-Fock atomic wave functions of Clementi and
Roetti [9], for the ground and certain excited states of helium through xenon atoms
and their singly charged positive and negative ions, have been tabulated by Gadre
et al. [10]. Westgate et al. [11] have collected some total momentum expectation
values and other momentum space properties for nonrelativistic functions [9,12].
All the mentioned evaluations of {p') values have been carried out using the elec-
tron momentum density by numerical quadrature. Some operators are directly
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available from {p*)>: the Compton profile J(0) is equal to {p~!)/2, the Slater—
Dirac exchange energy is proportional to {p), the electronic energy is equal to
{p*>/2, the initial value of the Patterson function in X-ray cristallography is pro-
portional to (p*, and relativistic corrections are proportional to (p*.

The analytical expressions for electron momentum distributions in the config-
urational Slater-type orbital approximation have been obtained for small atoms as
well as for particular cases (only analytical formulae of 1s or 3d STO functions
have been developed [13-16]. The aim of the present work is to describe formulae
corresponding to orbital momentum values of STO functions.

2. Theory

Under the LCAO approximation an orbital function &; is expressed as a linear
combination of a noncomplete basis set {;}1;:

n
&;(r) =Y _@ilr)ey - (1
i=1
The Fourier transform of this orbital is expressed either by the integral [17],

#p) = 20" [ a0, @)

where p is the momentum coordinate, or by a linear combination of the Fourier
transforms of the basis set functions

&(p) = Z @i(p)ci - 3)
i=1

For calculating orbital momentum expectation values {p'>, eq. (3) will be
employed. They are given by

CTERC A (4)
and using the expansion of &; in the basis set
@ =D cylm<ilp'|Pm)- (5)
im=1

The matrix elements {@;|p’|@m> Will be neglected when two functions with differ-
ent quantum numbers / or m; are involved in the integral. This is due to the angular
dependence of ¢(p), which in atomic problems is identical to that of the original
o(r).

The momentum expectation values {p*) for the atom would be given by the addi-
tion of (p’); over all the spin orbitals N needed to describe the electronic atomic
state,
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Table 1
Normalization constants for Fourier transforms of STO functions.
1=0 I=1 =2
n=1 (261s/m)' 4¢3,
n=2 (2 /3m) 2403, (26p/3m)' 21603,
n=3 (Go/5m) 3205, (G/45m)' 2323, (Ga/5m)" 26403,
n=4 (2€4s/357) '/ 16¢2, (26p/35m)' /2323, (2¢aa/35m)' 2324,
n=>5 (¢ss/63m)" 264¢E, (Csp/1575m)"/264C3,
N
Py => " (6)
j=1

From Fourier transforms of STOs given by Kaijser and Smith [18] the elements
{@i|p'|émy can be calculated analytically. These transforms do not follow a generic
formula capable of being integrated over p. However, all of them are a linear combi-

nation of positive powers of p and negative powers of ((? + p?); this can be written
as

@i = =) (DTN @+ )T ST Ry, (7)

£=0,2,4

where the normalization constant N(;), given in table 1 are powers of ¢; multiplied
by integer numbers, /; and n; are respectively the azimutal and the principal quan-
tum numbers of the ¢; function, ¢; is the exponent, p the momentum variable and
Fy(¢;) afactor constant in the integration over p coordinates, depending on (; and k.
The index k takes values 0, 2 or 4, not higher than 4 for n; + /; <6, depending on
the number of summands involved in the considered Fourier transform, ¢;. These
factors are summarized in table 2, where every row gives the factor for one basis
function.

Table2
Factors for Fourier transforms of STO functions.

Fy 23 Fy
@1 s 1
‘2’23 34?2,3 -1
@35 C%s -1
Pas 5 C:s -1 chs 1
‘1559 3 Gs -1 chs 3
@21) 1
@3p S%’ -1
¢4P 5 C«%p -3
Psp 35C§p —42(§p 3
Pad 1

Pag 7o -1
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The number of summands required to calculate {@;|p'|$m > depends on the num-
ber of summands involved in ¢; and ¢,, Fourier transforms. Using eq. (7) for ¢;
and @y, those elements have the expression

@ilP' [@m> =NGNGm) D Y Fi(G)Fy(Gm)

k=0,2,4 g=0,2,4
o0
/O pk+q+h+1.,.+2+r(p2 +C,?‘)_("'+I)(P2 +C,3, )—(nm+1)dp_ (8)

Defining the new indices v=(k+qg+L+l+3+1)/2, p=nm+1 and
p = nm + 1, the above integral is redesignated as I ({i, m, v, 4, p),

<95ilpxl¢m> = N(G)N(¢m) Z Z Fk(Ci)Fq(Cm)I(Cx‘, Cms Vs 4, P) - 9)

k=02,4 g=0,2,4
These integrals can be solved with a variable change [19] and the solution is
1(Giy Gy vy 11, ) = 3P By, — v + p) 2Fy (v o+ p; 1 = G2 /¢F) (10)
whenv>0and p> (v — p) and where B(a, b) is a beta function, defined by
I'(a)I(b)

B(a,b) = Tt h) (11)
and » F) is a hypergeometric function:

2Fi(a,b;c;z) = Z(a%l::)il)cﬁ (12)
with

(@), =ala+1)(a+2)...(a+k-1). (13)
Maximum and minimum p powers are given by the restriction required in eq. (10),

—k+q+bLi+in+3)<t<2mi+nm) —Li+ln+k+q)+1. (14)

For example, for two 1s functions where k=¢=0, ;=1,=0 and
n; = ny, = 1, the limits of the integral are —3 <t < 5. Explicit expressions of eq. (9),
for 1s to 4d orbitals, are given in the appendix. These formulae are given as a func-
tion of normalization constants N((;), N((») (see table 1), the exponents, (;, (n
and the integrals 7((;, m, v, 1, p). Notice that in the appendix, we have simplified
the notation of the integrals of eq. (10), eliminating the two exponents involved in
the calculated term.

3. Results and discussion

The atomic momentum expectation values (Z <54) using any STO basis set
can be investigated from the expressions in the appendix. These expressions make
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Table 3
Orbital momentum expectation values {p'> and (p*)> for the Mn (GS) atom.

oD @

Ponce® This work Ponce® This work
1s 0.2074285(+2) 0.207440(+2) 0.60091613(+3) 0.601488(+-3)
2s 0.685909(+1) 0.685914(+1) 0.11006106(+4-3) 0.110112(+3)
2p 0.925438(+1) 0.925427(+1) 0.10748722(+3) 0.107486(+3)
3s 0.274873(+1) 0.274876(+1) 0.2270143(+2) 0.227085(+2)
3p 0.316308(+1) 0.316312(+1) 0.1973988(+2) 0.197404(+4-2)
3d 0.314002(+1) 0.314001(+1) 0.1294302(+2) 0.129430(+2)
4s 0.58296 0.583262 0.151329(+3) 0.151336(+1)

®) From ref. [8].

possible to evaluate the (p') analytically. Numerical tests are carried out in this sec-
tion to study the accuracy of the orbital and total momentum values obtained by
using the Hartree-Fock limit function [9] of the Mn atom in the °S state. All calcu-
lations are given in atomic units (for {p’ YA'a;").

Table 3 summarizes orbital momentum expectation values obtained by Ponce
and in this work. In the formulae proposed in this work, the number of significant
figures for (p’) is limited by the accuracy of the wave function. An ordering of the
exponents, (,<(;, avoids the nonconvergence of the hypergeometrical series.
Clementi wave functions [9] are tabulated with 6 digits but the significant figures of
the coefficients change from 1 to 5. In order to give {p') values with 6 significant
figures we have recalculated the orbital coefficients. A variation of between 4 and 6
figures is shown by comparing the orbital values of Ponce and the ones obtained
with analytic formulae. The highest discrepancy is given for {p)4; and {(p?>ys.

Comparisons of {p’) total values are shown in table 4. Here we compare our
results with those of Gadre for t = —2 to 4 and with those of Ponce’s for t = 1 and 2.
The latter values have been calculated from the sum of corresponding orbital
values given in table 3. The errors in {p*) for our calculations are 10~6, limited by

Table 4
Total momentum expectation values (p*) for the Mn (°S) atom.
Ponce Gadreetal. This work
-2 0.41195(+2) 0.411943(+2)
-1 0.14342(+2) 0.143422(+2)
1 0.15207212(+3) 0.15207(+3) 0.152075(+3)
2 0.229846152(+4) 0.22997(+4) 0.229971(+4)
3 0.70260(+5) 0.702606(+5)
4 0.44324(+7) 0.443241(+7)

#) Calculated from orbital momentum expectation values of table 3.

® From ref. [11].
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the number of significant figures of the Hartree-Fock limit function used. As
shown in both tables 3 and 4, the {p*) values by Ponce are those exhibiting the high-
est discrepancy when compared with ours. Differences with Gadre’s results are
obtained in the 4th or 5th figures, both if Clementi’s coefficients [9] or recalculated
coefficients (tables 3 and 4) are employed. The {p*> obtained from the proposed
formulae have errors ten times smaller than Gadre’s values due to the numerical
procedure used by those authors.

This study presents analytical formulae to obtain orbital and total momentum
expectation values for STO functions. These values can be computed for Z = 2 to
54 and provide quick and accurate results for their atomic properties.
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Appendix

Analytic expressions for <{@|p'|¢my integrals with STO functions
1s,2s, 3s,4s, 55, 2p, 3p,4p, Sp, 3d and 4d:

(G (19 = NISNUJC "; 32 2) (A1)
(Tslp' 35> = NisNos [3(251(’“;3 2, 3) —1<’-“;‘—5,2, 3)] (A2)
(fs[p']iv)zN”Nss[Cgs (’ ’;3 2 4) 1(’ “;5 2 4)] (A3)
(Tslp'|s> =Ni;Nag [sgjsl(’“; 35 5)

_102.1 (”2‘5 2 5) +1(’“;7 2,5)}, A9
(T5lp'|35> =NisNs, {3@1(’;3 2 6)

(A.5)
_10¢41 (“;5 2 6) +31(”2"7 2,6)},
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(Fs|p' 25 =NasNay [94,2_94,2_,,1 (' ”‘2' 3 3 3)

3@+ @2 33) +1(53)]

~ t
(35|p'|3s> =NasNas [34,2_,@. ( ;3 3 4)

—(3g§s+g§s)1(t;5 3 4) +1(";7 3,4)],

Gslp'|As> =NaNas [15@,@1 (’ ; 33, 5)

563G+ (523 s)
+(3ci+1oci)1(’;7 3 5) 1(-’—+—9 3, 5)]

(351p'|55> =NasNss [9@,4‘; (’ “;3 3 6)

31026, +<‘5‘s)1(t+ >,3.6)

9
+(9C + 10@5)1(’—“;—7,3,6) _ 31(’—'*2'—,3,6)] ,

P> =Nuae[GG1(5,4.9)

- @+ @r(SRaa)r (S aa)

(Gslp'|4s) N3,N4S[5dsc3s (‘ ';3,4, 5)

5
5(2C4SC3S + ds)l( ks 5)
H(E + 1032)T (’ +7 4 5) _ 1(’—%‘2,4, 5)} ,
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(A.6)

(A7)

(A.8)

(A.9)

(A.10)

(A.11)
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Gslp'|55> =N, N, [34;@ (’+3 4 6)

2
- (1063, + 361 (52 4.6
+ (32 + locszs)l(fiz‘l,4 6) - 31(”;9 4,6)J , (A.12)

(Aslp'45"> =NasNag [zsc“ 1 (’*3 5)

5
— 50(G4,Cay + G (HZ— N 5)

7
S(ch + G + 20651 (S555)

-10(C§S+C§f)1($,5, 5) +1(ﬁ2ﬁ,5,5>J , (A.13)

(A35(p|55> =NaoNs, {154;;@1 (’ *2' 3 s, 6)

t+5
- 10 SCZYCss + 3C§SC4S ( 3556)

t+7
+ 156+ 3¢, + 100 3)r (5 5.6)

~1063¢, + )T ( “;9 5 6) 3I(t+2”,5,6)], (A.14)

(5s|p'|55'y =NsoNsy [9@5@5, (t+3 6 6)
5
30(¢5,Gy + (363, (t+ 6 6)
+ 06, + 96, + 100501 (5 6.6

_30(C§S+ng)l(t-;9 6, 6) 91(1211,6,6)}, (A.15)
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— 5
Cplp'ar> =szN2,y1(’”; 3 3)
5,3,4) —I(t+7 3 4)}
2
3, 5) —31(”2‘7 3,5)],

5 t+7
33 ) 42C5p ( 2 1376)

t

wl+

Gl > = N[5,

t

-+
wh

Qplp'[4p> = NopNsy [sci,,f(

Nl

-+

l

oo 59 Nz,,Ns,,[3sc§,, (
t+9
31( ' )

t+35
P 7> =Ny 256,515 4.4)

L__JN

2
'-S(Cgp +C§p’) (t_;7 4 4) I(?:‘*v‘*)} ’

5
Gplp' (> =Ns,Nep [25<3p<4,, (’ ] 5)

— (3¢ + )1 (’;7 4 5) +31<”2‘9 4,5)},

—~ t+5
(3plp'[5p) = N3pNsp {175@,,4;‘1, ( 5 4 6)

t+7
35(603,G3, + (5,1 (—2— 4, 6)
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(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

+3(5¢, + 1445p)1(’+9 4 6) - 31(’ +2“ 4, 6)] . (A22)

t+5

o~ t+7
Ep|p'|Ap’> =NupNay [25c§pg§p,1 (—2— S, 5) —15(¢5, + )T (—2— .5, 5)

+91<’;9 5 5)}

(A.23)
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5
C@p|p'[5py =N, Ns, [175c4,,c§,,1(’+ 5 6)
7
~105(23,¢3, + C)I (z+ s 6)

(544,,—»—42(5,,)1(’ +9 s, 6) 91(’ +211,5,6ﬂ, (A.24)

e t+5
Glp 57> =N | 122563 G 1 (T 6.6)
t+7 7

t+9
+105(83, + Gy + 17640301 ( -6 6)

t+ 11 t+13
—126(g§p+g§p,)1(—%—,6,6)+91(*’2 ,5,5)}, (A.25)

Gdlp'|3dy = N3dN3d:I(£l;—z 4 4) (A.26)
BGd|p'/ady = N3Ny [74441(’“;7 4, 5) = 1(# 4, 5)] (A.27)
(&d|p'|4d"> =NagNug [49@,@,,1(’“;7 5 5)

—¢E, + E DI (’ "; 2 )5 5) + I(t 4’211 .5, 5)] . (A.28)
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